Cardiolipin synthesis for the assembly of bacterial and mitochondrial membranes.
نویسنده
چکیده
In this article, the formation of prokaryotic and eukaryotic cardiolipin is reviewed in light of its biological function. I begin with a detailed account of the structure of cardiolipin, its stereochemistry, and the resulting physical properties, and I present structural analogs of cardiolipin that occur in some organisms. Then I continue to discuss i) the de novo formation of cardiolipin, ii) its acyl remodeling, iii) the assembly of cardiolipin into biological membranes, and iv) the degradation of cardiolipin, which may be involved in apoptosis and mitochondrial fusion. Thus, this article covers the entire metabolic cycle of this unique phospholipid. It is shown that mitochondria produce cardiolipin species with a high degree of structural uniformity and molecular symmetry, among which there is often a dominant form with four identical acyl chains. The subsequent assembly of cardiolipin into functional membranes is largely unknown, but the analysis of crystal structures of membrane proteins has revealed a first glimpse into the underlying principles of cardiolipin-protein interactions. Disturbances of cardiolipin metabolism are crucial in the pathophysiology of human Barth syndrome and perhaps also play a role in diabetes and ischemic heart disease.
منابع مشابه
An essential bacterial-type cardiolipin synthase mediates cardiolipin formation in a eukaryote.
Cardiolipin is important for bacterial and mitochondrial stability and function. The final step in cardiolipin biosynthesis is catalyzed by cardiolipin synthase and differs mechanistically between prokaryotes and eukaryotes. To study the importance of cardiolipin synthesis for mitochondrial integrity, membrane protein complex formation, and cell proliferation in the human and animal pathogenic ...
متن کاملCross-species complementation of bacterial- and eukaryotic-type cardiolipin synthases
The glycerophospholipid cardiolipin is a unique constituent of bacterial and mitochondrial membranes. It is involved in forming and stabilizing high molecular mass membrane protein complexes and in maintaining membrane architecture. Absence of cardiolipin leads to reduced efficiency of the electron transport chain, decreased membrane potential, and, ultimately, impaired respiratory metabolism. ...
متن کاملSynthesis and biological evaluation of a novel cardiolipin affinity matrix.
Cardiolipin (1) is a dimeric phospholipid found in the mitochondrial membranes of both plants and animals. In order to understand better its role, we report the preparation of an immobilised analogue (2) using phosphoramidite chemistry; the probe has been used successfully to bind a recombinant protein containing a cardiolipin-binding domain.
متن کاملPhosphatidylglycerol and Related Lipids
Phosphatidylglycerol is found in almost all bacterial types. For example, Escherichia coli, a widely studied organism, has up to 20% of phosphatidylglycerol in its membranes (phosphatidylethanolamine makes up much of the rest with a little cardiolipin). In many bacteria, the diacyl form of the lipid predominates, but in others the alkylacyland alkenylacyl forms are more abundant. Phosphatidylgl...
متن کاملSolubilization, purification, and characterization of cardiolipin synthase from rat liver mitochondria. Demonstration of its phospholipid requirement.
Cardiolipin is a specific and functionally important phospholipid of mitochondria, and its biosynthesis is considered to be crucial for the assembly of this organelle. However, little information is available about the enzyme cardiolipin synthase, largely because it has not yet been isolated. We solubilized cardiolipin synthase from rat liver mitochondrial membranes with Zwittergent 3-14 and pu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of lipid research
دوره 49 8 شماره
صفحات -
تاریخ انتشار 2008